Investigating Full-waveform Lidar Data for Detection and Recognition of Vertical Objects
نویسنده
چکیده
A recent innovation in commercially-available topographic lidar systems is the ability to record return waveforms at high sampling frequencies. These “full-waveform” systems provide up to two orders of magnitude more data than “discrete-return” systems. However, due to the relatively limited capabilities of current processing and analysis software, more data does not always translate into more or better information for object extraction applications. In this paper, we describe a new approach for exploiting full waveform data to improve detection and recognition of vertical objects, such as trees, poles, buildings, towers, and antennas. Each waveform is first deconvolved using an expectation-maximization (EM) algorithm to obtain a train of spikes in time, where each spike corresponds to an individual laser reflection. The output is then georeferenced to create extremely dense, detailed X,Y,Z,I point clouds, where I denotes intensity. A tunable parameter is used to control the number of spikes in the deconvolved waveform, and, hence, the point density of the output point cloud. Preliminary results indicate that the average number of points on vertical objects using this method is several times higher than using discrete-return lidar data. The next steps in this ongoing research will involve voxelizing the lidar point cloud to obtain a high-resolution volume of intensity values and computing a 3D wavelet representation. The final step will entail performing vertical object detection/recognition in the wavelet domain using a multiresolution template matching approach.
منابع مشابه
Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملLitemapper-5600 – a Waveform-digitizing Lidar Terrain and Vegetation Mapping System
LiteMapper-5600 is a new high-accuracy airborne LIDAR system for corridor and wide-area mapping of terrain and vegetation with a unique feature: it digitizes the echo waveform of each measurement. This paper outlines the system and its components, presents first samples of data that were collected recently with a prototype in flight tests, and analyzes system performance. It highlights applicat...
متن کاملForest Canopy LAI and Vertical FAVD Profile Inversion from Airborne Full-Waveform LiDAR Data Based on a Radiative Transfer Model
Forest canopy leaf area index (LAI) is a critical variable for the modeling of climates and ecosystems over both regional and global scales. This paper proposes a physically based method to retrieve LAI and foliage area volume density (FAVD) profile directly from full-waveform Light Detection And Ranging (LiDAR) data using a radiative transfer (RT) model. First, a physical interaction model bet...
متن کاملFusion of high spatial resolution WorldView-2 imagery and LiDAR pseudo-waveform for object-based image analysis
High spatial resolution (HSR) imagery and high density LiDAR data provide complementary horizontal and vertical information. Therefore, many studies have focused on fusing the two for mapping geographic features. It has been demonstrated that the synergetic use of LiDAR and HSR imagery greatly improves classification accuracy. This is especially true with waveform LiDAR data since they provide ...
متن کاملExploring Weak and Overlapped Returns of a Lidar Waveform with a Wavelet-based Echo Detector
Full waveform data recording the reflected laser signal from ground objects have been provided by some commercial airborne LIDAR systems in the last few years. Waveform data enable users to explore more information and characteristics of the earth surface than conventional LIDAR point cloud. An important application is to extract extra point clouds from waveform data in addition to the point cl...
متن کامل